# Nickel Results Highlight Exploration Potential for Multiple High Value Commodities at Chalice West

## **Highlights of this Announcement**

- Assays received for approximately half of the drilling program show multiple nickel intercepts.
- Significant nickel assays include:
  - 9m @ 3,636ppm (0.36%) Ni including 2m @ 6,663ppm (0.67%) Ni in AAC0279.
  - 13m at 2,116ppm (0.21%) Ni in AAC0311.
- Three ultramafic units defined with two having distinct nickel anomalism.
- Strong nickel anomalism in weathered ultramafic rocks highlights potential for sulphide nickel mineralisation at Chalice West Prospect.
- 7km long magnetic feature linked with anomalous Rare Earth Elements (REE).
- 5km strike length gold anomalism.
- Ground Electromagnetics (EM) survey next step.

#### The Announcement

**Auric Mining Limited** (ASX: **AWJ**) (**Auric** or **the Company**) is pleased to provide further detail following the completion of drilling at the Company's Chalice West Project near Higginsville-Widgiemooltha, Western Australia. The drilling program was completed on 22 November 2022 with 227 aircore holes drilled for 7,227m (Figure 1).

Initial results for gold and Rare Earth Elements (**REE**) were announced on 19 December 2022.

Auric Managing Director Mark English, commented that:

"This initial aircore drilling program has highlighted the exciting opportunities at Chalice West for several commodities, particularly REE and nickel, in addition to gold.

We've intersected high REE grades in clays, one result being 4m at 3,591ppm (TREO) including 1m at 11,038ppm (TREO) with favorable chemistry that are linked to a strong prospective 7km magnetic feature as well as some good nickel results. A strong magnetic high nearby represents another enticing target. Drilling has identified 3 weathered ultramafic units, 2 of those with strong nickel anomalism. Our exploration

model for nickel compares the new setting with the nearby Widgiemooltha Dome, host to numerous komatiite-hosted nickel deposits.

This is the first phase of results from our exploration program, it provides a great steppingstone for exploration and potential development of what could be a fertile new area for multiple commodities."

#### Program and results to date

Onsite pXRF testing for nickel was used as an objective basis for selective (1m) sampling and associated laboratory analyses for nickel and other elements.

Assay results have now been received for 119 of the 227 bottom of hole composite samples and for 177 of the 370 single metre selected samples. All of the assays relate to drilling along the interpreted repeat of the Chalice Gold Mine stratigraphy, now referred to as the Chalice West Prospect.

Anomalous nickel intercepts have been returned for 9 of the holes, with 9m at 3,636ppm Ni recorded for AAC0279 which includes 2m at 6,663ppm Ni (0.67% Ni) and 13m at 2,116ppm Ni recorded for AAC0311. These intercepts occur within weathered ultramafic units revealing potential for nickel sulphide mineralization in the unweathered extensions of the same units, perhaps similar to komatiite-hosted nickel sulphide mineralization for which the Widgiemooltha area is renowned.

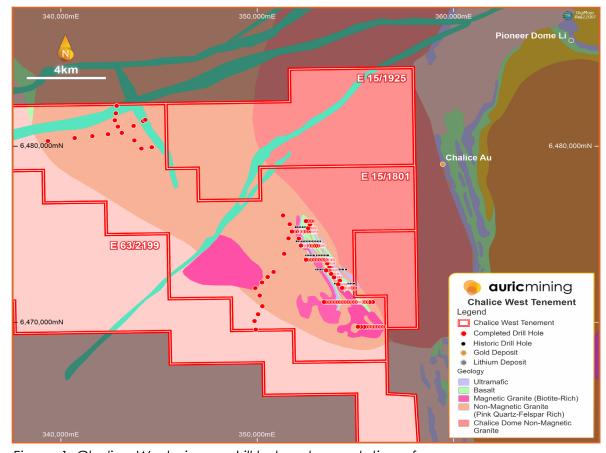



Figure 1. Chalice West aircore drill holes at completion of program.

Drill holes were logged by a geologist at 1m intervals and the lithologies, particularly in the clay-weathered sequence compared with pXRF results for Cr, Ti and Zr to better constrain the clay-weathered protoliths.

On this basis, 3 ultramafic units dominated by amphiboles and chlorite have been defined, intercalated with basalt units and granite. Anomalous nickel at a 1000ppm (ie, 0.1%) cut-off has been intersected in 7 holes, within or proximal to two of the ultramafic units. Most of the anomalous values in aircore holes correlate with surface soil anomalies defined at a lower, ie, 100ppm cut-off (Figure 2). Ni anomalism intersected in 2 other holes appears to occur within weathered basalts although there is some geochemical support for an ultramafic interpretation.

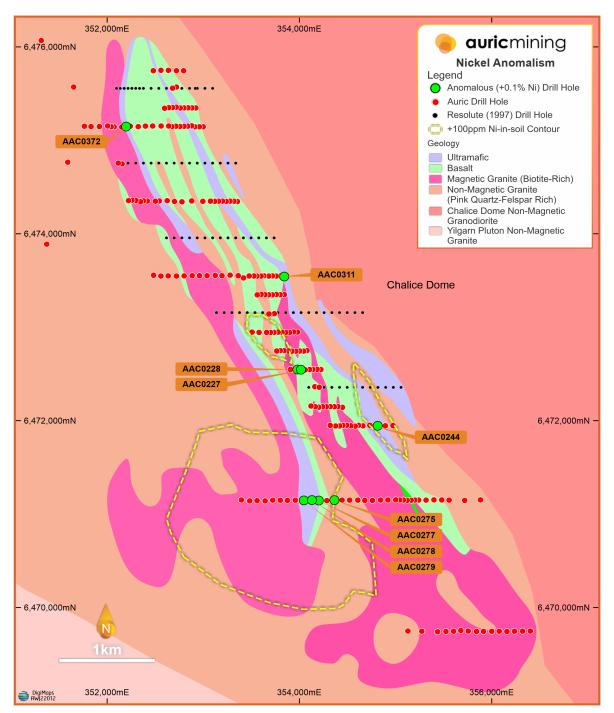



Figure 2. Chalice West Ni-in-soils and Ni-in-aircore anomalism.

The association with ultramafic units is illustrated in cross section (Figure 3).

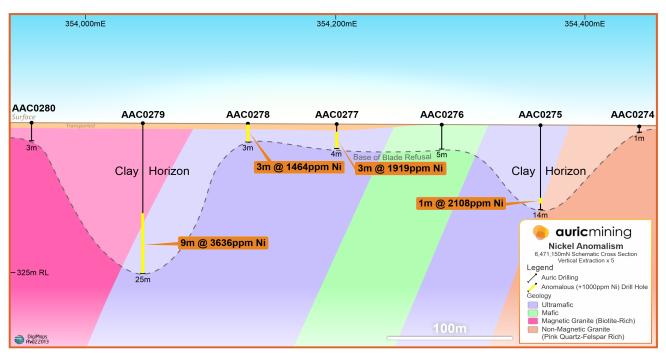



Figure 3. Chalice West Prospect – 6471150N Cross Section with Significant Ni Intersections.

Significant Ni assays for both single-metre infill samples and bottom-of-hole composite samples at a 1000ppm Ni cut-off are presented in Table 1. Other elements (Cr and Zn) that may assist in vectoring toward a potential sulphide source for the Ni are also listed along with Cu and Co which commonly occur with Ni mineralisation in komatiite-hosted nickel deposits. Drill hole details are included as Appendix A.

Upon receipt of the remaining drill assays, the results will be compiled and interpreted. There is potential for nickel sulphide mineralisation along the Chalice West Prospect ultramafics and a ground Electromagnetics (EM) survey to define conductive sulphide units is the next exploration step.

| Hole_ID   | From                        | То       | Interval<br>(m) | Ni<br>(ppm) | Co<br>(ppm) | Cr<br>(ppm) | Cu<br>(ppm) | Zn<br>(ppm) |  |
|-----------|-----------------------------|----------|-----------------|-------------|-------------|-------------|-------------|-------------|--|
| Single me | Single metre infill samples |          |                 |             |             |             |             |             |  |
| AAC0227   | 34                          | 37       | 3               | 1347        | 468         | 490         | 130         | 226         |  |
| AAC0228   | 28                          | 29       | 1               | 1210        | 93.7        | 1158        | 62          | 199         |  |
| AAC0275   | 12                          | 13       | 1               | 2108        | 72.8        | 2316        | 123         | 150         |  |
| AAC0277   | 1                           | 4        | 3               | 1919        | 112         | 4292        | 114         | 64          |  |
| AAC0279   | 15                          | 24       | 9               | 3636        | 221         | 2446        | 19          | 115         |  |
| incl      | 18                          | 20       | 2               | 6663        | 361         | 3456        | 6           | 177         |  |
| AAC0311   | 20                          | 33       | 13              | 2116        | 196         | 9979        | 191         | 321         |  |
| Bottom of | hole cor                    | nposites |                 |             |             |             |             |             |  |
| AAC0244   | 12                          | 15       | 3               | 2307        | 49          | 5116        | 100         | 159         |  |
| AAC0278   | 0                           | 3        | 3               | 1464        | 102         | 3326        | 43          | 65          |  |
| AAC0372   | 52                          | 56       | 4               | 1455        | 131         | 2439        | 82          | 168         |  |

Table 1. Significant Ni assays at a 1000ppm cut-off.

# **ENDS**

| Mark | Engli | sh              |
|------|-------|-----------------|
| Mana | ging  | <b>Director</b> |

This announcement has been approved for release by the Board.

Further information contact:

Mark English menglish@auricmining.com.au 0409 372 775

## **About Auric Mining**

Auric Mining was established to explore for and develop gold and other mineral deposits in the Widgiemooltha-Norseman area, of Western Australia.

Auric has four projects (Figure 4):

#### The Widgiemooltha Gold Project & Munda Gold Deposit

The Widgiemooltha Gold Project ("WGP") located near the town of Widgiemooltha combines 20 tenements, including 5 granted Mining Leases. All tenements are highly prospective for gold mineralisation. This includes the Munda Gold Deposit. The combined Inferred and Indicated Mineral Resource estimate for Munda at 0.5g/t cut-off is 4.48Mt @ 1.38g/t Au for 198,700oz gold.

#### The Chalice West Project

The Chalice West Project is adjacent to the Chalice Mine, a mine that produced almost 700,000 ounces of gold and combines 3 tenements. It covers 408km², including geology mirroring the Chalice Mine and is approximately 50km northwest of Norseman.

#### The Jeffrey Find Project

The Jeffreys Find Project is 50km northeast of Norseman and combines 2 tenements including 1 granted Mining Lease. It holds the Jeffreys Find gold deposit. The gold mineralisation extends from the surface to at least 110m in vertical depth and is thickest near the surface. The combined Inferred and Indicated Mineral Resource estimate for Jeffreys Find at 0.5g/t cut-off is 1.22Mt @ 1.22g/t Au for 47,900oz gold<sup>2</sup>.

#### The Spargoville Project

The Spargoville Project is located 30km north of Widgiemooltha and combines 7 tenements. It lies in the same stratigraphy, along strike from the Wattle Dam Gold Mine which produced 268,000oz gold @ 10g/t from 2006-13; one of Australia's highest-grade mines at that time.

#### **Summary**

Auric now has tenements covering 516km<sup>2</sup>. Auric holds the rights to gold on all of its tenements. Further, at Munda it holds all mineral rights except nickel and lithium. At Jeffreys Find, Chalice West, the original Spargoville tenements and two recent WGP applications, Auric owns 100% of all mineral rights.

<sup>&</sup>lt;sup>1</sup> (ASX:AWJ): Announcement 28 January 2022: Increase in Estimated Resources at Munda and Reclassification from Inferred to Indicated.

<sup>&</sup>lt;sup>2</sup> (ASX:AWJ): Announcement 2 March 2021: Auric Mining Limited Resources Summary and Exploration Update

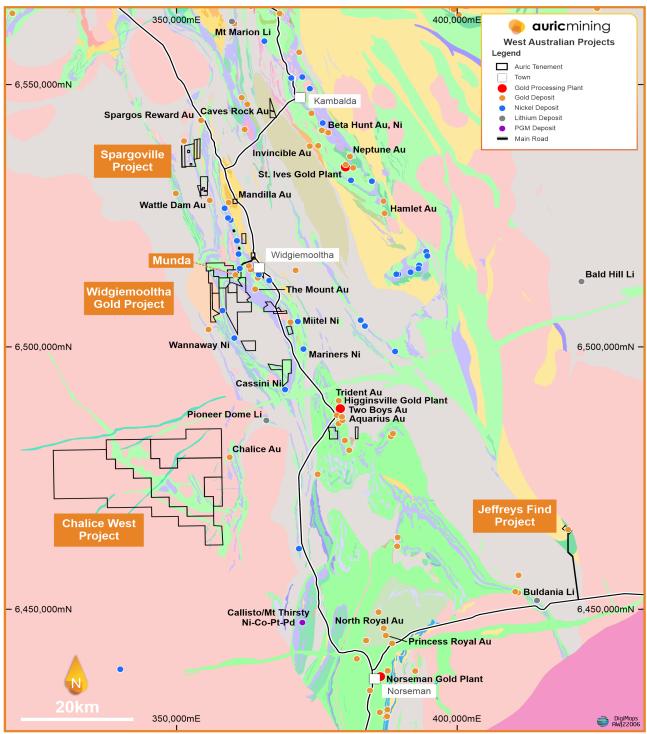



Figure 4. Auric's projects in the Widgiemooltha-Norseman area.

## **Compliance Statements**

The information in this announcement that relates to exploration results for the Chalice West Project is based on and fairly represents information and supporting documentation compiled by Mr John Utley, who is a full-time employee of Auric Mining Limited. Mr Utley is a Competent Person and a member of the Australian Institute of Geoscientists. Mr Utley has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Utley consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this announcement relating to the current resource estimate for the Munda Gold Deposit is extracted from the announcement Increase in Estimated Resources at Munda and Reclassification from Inferred to Indicated dated 28 January 2022. The information in this announcement relating to the current resource estimate for the Jeffreys Find gold deposit is extracted from the announcement Auric Mining Limited Resources Summary and Exploration Update dated 2 March 2021. Both announcements are available to view on the Auric website, auricmining.com.au. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Competent Person for both reports is Mr Neil Schofield and the company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

# **APPENDIX A: AIRCORE DRILLHOLE DETAILS**

| Hole_ID | Туре | Hole Depth (m) | MGA_East | MGA_North | Orig_RL | Dip | MGA_Azi |
|---------|------|----------------|----------|-----------|---------|-----|---------|
| AAC0199 | AC   | 51             | 353718   | 6473142   | 350     | -60 | 270     |
| AAC0200 | AC   | 73             | 353739   | 6473146   | 350     | -60 | 270     |
| AAC0201 | AC   | 51             | 353683   | 6473143   | 350     | -90 | 0       |
| AAC0202 | AC   | 9              | 353979   | 6472948   | 350     | -90 | 0       |
| AAC0203 | AC   | 20             | 353939   | 6472950   | 350     | -90 | 0       |
| AAC0204 | AC   | 3              | 353897   | 6472944   | 350     | -90 | 0       |
| AAC0205 | AC   | 16             | 353858   | 6472945   | 350     | -90 | 0       |
| AAC0206 | AC   | 14             | 353819   | 6472946   | 350     | -90 | 0       |
| AAC0207 | AC   | 5              | 353778   | 6472948   | 350     | -90 | 0       |
| AAC0208 | AC   | 22             | 353735   | 6472945   | 350     | -90 | 0       |
| AAC0209 | AC   | 26             | 353698   | 6472945   | 350     | -90 | 0       |
| AAC0210 | AC   | 15             | 353659   | 6472945   | 350     | -90 | 0       |
| AAC0211 | AC   | 16             | 353580   | 6472945   | 350     | -90 | 0       |
| AAC0212 | AC   | 31             | 353508   | 6472948   | 350     | -90 | 0       |
| AAC0213 | AC   | 20             | 354078   | 6472751   | 350     | -90 | 0       |
| AAC0214 | AC   | 2              | 354043   | 6472745   | 350     | -90 | 0       |
| AAC0215 | AC   | 15             | 354002   | 6472746   | 350     | -90 | 0       |
| AAC0216 | AC   | 2              | 353963   | 6472744   | 350     | -90 | 0       |
| AAC0217 | AC   | 9              | 353921   | 6472744   | 350     | -90 | 0       |
| AAC0218 | AC   | 23             | 353885   | 6472747   | 350     | -90 | 0       |
| AAC0219 | AC   | 4              | 353839   | 6472750   | 350     | -90 | 0       |
| AAC0220 | AC   | 13             | 353800   | 6472750   | 350     | -90 | 0       |
| AAC0221 | AC   | 4              | 353764   | 6472746   | 350     | -90 | 0       |
| AAC0222 | AC   | 13             | 354223   | 6472548   | 350     | -90 | 0       |
| AAC0223 | AC   | 35             | 354183   | 6472550   | 350     | -90 | 0       |
| AAC0224 | AC   | 9              | 354140   | 6472548   | 350     | -90 | 0       |
| AAC0225 | AC   | 29             | 354106   | 6472548   | 350     | -90 | 0       |
| AAC0226 | AC   | 22             | 354060   | 6472544   | 350     | -90 | 0       |
| AAC0227 | AC   | 37             | 354016   | 6472546   | 350     | -90 | 0       |
| AAC0228 | AC   | 33             | 353980   | 6472548   | 350     | -90 | 0       |
| AAC0229 | AC   | 43             | 353935   | 6472548   | 350     | -90 | 0       |
| AAC0230 | AC   | 48             | 353906   | 6472548   | 350     | -90 | 0       |
| AAC0231 | AC   | 60             | 354160   | 6472364   | 350     | -90 | 0       |
| AAC0232 | AC   | 72             | 354206   | 6472358   | 350     | -60 | 270     |
| AAC0233 | AC   | 8              | 354447   | 6472143   | 350     | -90 | 0       |
| AAC0234 | AC   | 8              | 354400   | 6472151   | 350     | -90 | 0       |
| AAC0235 | AC   | 35             | 354362   | 6472150   | 350     | -90 | 0       |
| AAC0237 | AC   | 9              | 354320   | 6472151   | 350     | -90 | 0       |
|         |      |                |          |           |         |     |         |

page | 9

| Hole_ID | Туре | Hole Depth (m) | MGA_East | MGA_North | Orig_RL | Dip | MGA_Azi |
|---------|------|----------------|----------|-----------|---------|-----|---------|
| AAC0238 | AC   | 23             | 354279   | 6472150   | 350     | -90 | 0       |
| AAC0239 | AC   | 12             | 354241   | 6472150   | 350     | -90 | 0       |
| AAC0240 | AC   | 45             | 354201   | 6472145   | 350     | -90 | 0       |
| AAC0241 | AC   | 27             | 354164   | 6472150   | 350     | -90 | 0       |
| AAC0242 | AC   | 32             | 354120   | 6472157   | 350     | -90 | 0       |
| AAC0243 | AC   | 1              | 354973   | 6471948   | 350     | -90 | 0       |
| AAC0244 | AC   | 2              | 354894   | 6471946   | 350     | -90 | 0       |
| AAC0245 | AC   | 15             | 354814   | 6471946   | 350     | -90 | 0       |
| AAC0246 | AC   | 15             | 354733   | 6471951   | 350     | -90 | 0       |
| AAC0247 | AC   | 2              | 354660   | 6471945   | 350     | -90 | 0       |
| AAC0248 | AC   | 32             | 354615   | 6471951   | 350     | -90 | 0       |
| AAC0249 | AC   | 5              | 354580   | 6471942   | 350     | -90 | 0       |
| AAC0250 | AC   | 13             | 354535   | 6471946   | 350     | -90 | 0       |
| AAC0251 | AC   | 16             | 354491   | 6471951   | 350     | -90 | 0       |
| AAC0252 | AC   | 5              | 354452   | 6471950   | 350     | -90 | 0       |
| AAC0253 | AC   | 17             | 354418   | 6471944   | 350     | -90 | 0       |
| AAC0254 | AC   | 36             | 354376   | 6471944   | 350     | -90 | 0       |
| AAC0255 | AC   | 52             | 354320   | 6471950   | 350     | -90 | 0       |
| AAC0256 | AC   | 65             | 355719   | 6471147   | 350     | -90 | 0       |
| AAC0257 | AC   | 41             | 355557   | 6471150   | 350     | -90 | 0       |
| AAC0258 | AC   | 39             | 355480   | 6471152   | 350     | -90 | 0       |
| AAC0259 | AC   | 19             | 355399   | 6471153   | 350     | -90 | 0       |
| AAC0260 | AC   | 45             | 355317   | 6471150   | 350     | -90 | 0       |
| AAC0261 | AC   | 53             | 355240   | 6471151   | 350     | -90 | 0       |
| AAC0262 | AC   | 56             | 355200   | 6471151   | 350     | -90 | 0       |
| AAC0263 | AC   | 37             | 355162   | 6471149   | 350     | -90 | 0       |
| AAC0264 | AC   | 28             | 355120   | 6471148   | 350     | -90 | 0       |
| AAC0265 | AC   | 33             | 355081   | 6471151   | 350     | -90 | 0       |
| AAC0266 | AC   | 31             | 355043   | 6471152   | 350     | -90 | 0       |
| AAC0267 | AC   | 30             | 355001   | 6471153   | 350     | -90 | 0       |
| AAC0268 | AC   | 37             | 354920   | 6471152   | 350     | -90 | 0       |
| AAC0269 | AC   | 28             | 354844   | 6471151   | 350     | -90 | 0       |
| AAC0270 | AC   | 35             | 354759   | 6471147   | 350     | -90 | 0       |
| AAC0271 | AC   | 10             | 354680   | 6471147   | 350     | -90 | 0       |
| AAC0272 | AC   | 2              | 354607   | 6471150   | 350     | -90 | 0       |
| AAC0273 | AC   | 5              | 354522   | 6471150   | 350     | -90 | 0       |
| AAC0274 | AC   | 1              | 354443   | 6471150   | 350     | -90 | 0       |
| AAC0275 | AC   | 14             | 354364   | 6471150   | 350     | -90 | 0       |
| AAC0276 | AC   | 4              | 354285   | 6471145   | 350     | -90 | 0       |
| AAC0277 | AC   | 4              | 354201   | 6471146   | 350     | -90 | 0       |

| Hole_ID | Type | Hole Depth (m) | MGA_East | MGA_North | Orig_RL | Dip | MGA_Azi |
|---------|------|----------------|----------|-----------|---------|-----|---------|
| AAC0278 | AC   | 3              | 354130   | 6471151   | 350     | -90 | 0       |
| AAC0279 | AC   | 25             | 354046   | 6471147   | 350     | -90 | 0       |
| AAC0280 | AC   | 3              | 353957   | 6471149   | 350     | -90 | 0       |
| AAC0281 | AC   | 2              | 353874   | 6471147   | 350     | -90 | 0       |
| AAC0282 | AC   | 4              | 353801   | 6471149   | 350     | -90 | 0       |
| AAC0283 | AC   | 8              | 353722   | 6471150   | 350     | -90 | 0       |
| AAC0284 | AC   | 10             | 353643   | 6471142   | 350     | -90 | 0       |
| AAC0285 | AC   | 21             | 353559   | 6471145   | 350     | -90 | 0       |
| AAC0286 | AC   | 26             | 353482   | 6471142   | 350     | -90 | 0       |
| AAC0287 | AC   | 15             | 353396   | 6471152   | 350     | -90 | 0       |
| AAC0288 | AC   | 47             | 356402   | 6469749   | 350     | -90 | 0       |
| AAC0289 | AC   | 57             | 356321   | 6469748   | 350     | -90 | 0       |
| AAC0290 | AC   | 50             | 356237   | 6469747   | 350     | -90 | 0       |
| AAC0291 | AC   | 44             | 356158   | 6469744   | 350     | -90 | 0       |
| AAC0292 | AC   | 6              | 356078   | 6469747   | 350     | -90 | 0       |
| AAC0293 | AC   | 39             | 356000   | 6469746   | 350     | -90 | 0       |
| AAC0294 | AC   | 46             | 355915   | 6469745   | 350     | -90 | 0       |
| AAC0295 | AC   | 47             | 355842   | 6469745   | 350     | -90 | 0       |
| AAC0296 | AC   | 36             | 355756   | 6469749   | 350     | -90 | 0       |
| AAC0297 | AC   | 37             | 355679   | 6469755   | 350     | -90 | 0       |
| AAC0298 | AC   | 72             | 355603   | 6469747   | 350     | -90 | 0       |
| AAC0299 | AC   | 73             | 355524   | 6469744   | 350     | -90 | 0       |
| AAC0300 | AC   | 69             | 355437   | 6469741   | 350     | -90 | 0       |
| AAC0301 | AC   | 34             | 355273   | 6469747   | 350     | -90 | 0       |
| AAC0302 | AC   | 43             | 355128   | 6469749   | 350     | -90 | 0       |
| AAC0303 | AC   | 16             | 353842   | 6473350   | 350     | -90 | 0       |
| AAC0304 | AC   | 28             | 353799   | 6473349   | 350     | -90 | 0       |
| AAC0305 | AC   | 24             | 353759   | 6473351   | 350     | -90 | 0       |
| AAC0306 | AC   | 26             | 353718   | 6473347   | 350     | -90 | 0       |
| AAC0307 | AC   | 33             | 353679   | 6473348   | 350     | -90 | 0       |
| AAC0308 | AC   | 32             | 353641   | 6473349   | 350     | -90 | 0       |
| AAC0309 | AC   | 38             | 353601   | 6473352   | 350     | -90 | 0       |
| AAC0310 | AC   | 41             | 353561   | 6473347   | 350     | -90 | 0       |
| AAC0311 | AC   | 41             | 353561   | 6473347   | 350     | -90 | 0       |
| AAC0312 | AC   | 42             | 353842   | 6473543   | 350     | -90 | 0       |
| AAC0313 | AC   | 25             | 353800   | 6473549   | 350     | -90 | 0       |
| AAC0314 | AC   | 24             | 353759   | 6473548   | 350     | -90 | 0       |
| AAC0315 | AC   | 23             | 353719   | 6473550   | 350     | -90 | 0       |
| AAC0316 | AC   | 34             | 353681   | 6473548   | 350     | -90 | 0       |
| AAC0317 | AC   | 53             | 353629   | 6473551   | 350     | -90 | 0       |

| Hole_ID | Туре | Hole Depth (m) | MGA_East | MGA_North | Orig_RL | Dip | MGA_Azi |
|---------|------|----------------|----------|-----------|---------|-----|---------|
| AAC0318 | AC   | 41             | 353601   | 6473548   | 350     | -90 | 0       |
| AAC0319 | AC   | 54             | 353558   | 6473548   | 350     | -90 | 0       |
| AAC0320 | AC   | 56             | 353527   | 6473549   | 350     | -90 | 0       |
| AAC0321 | AC   | 44             | 353477   | 6473549   | 350     | -90 | 0       |
| AAC0322 | AC   | 51             | 353418   | 6473528   | 350     | -90 | 0       |
| AAC0323 | AC   | 40             | 353363   | 6473552   | 350     | -90 | 0       |
| AAC0324 | AC   | 16             | 353279   | 6473558   | 350     | -90 | 0       |
| AAC0325 | AC   | 25             | 353194   | 6473552   | 350     | -90 | 0       |
| AAC0326 | AC   | 32             | 353124   | 6473555   | 350     | -90 | 0       |
| AAC0327 | AC   | 18             | 353039   | 6473552   | 350     | -90 | 0       |
| AAC0328 | AC   | 14             | 352960   | 6473552   | 350     | -90 | 0       |
| AAC0329 | AC   | 15             | 352884   | 6473552   | 350     | -90 | 0       |
| AAC0330 | AC   | 24             | 352801   | 6473550   | 350     | -90 | 0       |
| AAC0331 | AC   | 13             | 352721   | 6473548   | 350     | -90 | 0       |
| AAC0332 | AC   | 6              | 352635   | 6473550   | 350     | -90 | 0       |
| AAC0333 | AC   | 3              | 352559   | 6473548   | 350     | -90 | 0       |
| AAC0334 | AC   | 2              | 352483   | 6473557   | 350     | -90 | 0       |
| AAC0335 | AC   | 11             | 353354   | 6474346   | 350     | -90 | 0       |
| AAC0336 | AC   | 14             | 353318   | 6474349   | 350     | -90 | 0       |
| AAC0337 | AC   | 14             | 353278   | 6474350   | 350     | -90 | 0       |
| AAC0338 | AC   | 13             | 353238   | 6474347   | 350     | -90 | 0       |
| AAC0339 | AC   | 8              | 353199   | 6474350   | 350     | -90 | 0       |
| AAC0340 | AC   | 5              | 353159   | 6474349   | 350     | -90 | 0       |
| AAC0341 | AC   | 10             | 353119   | 6474348   | 350     | -90 | 0       |
| AAC0342 | AC   | 17             | 353075   | 6474350   | 350     | -90 | 0       |
| AAC0343 | AC   | 11             | 352995   | 6474348   | 350     | -90 | 0       |
| AAC0344 | AC   | 20             | 352879   | 6474352   | 350     | -90 | 0       |
| AAC0345 | AC   | 28             | 352778   | 6474343   | 350     | -90 | 0       |
| AAC0346 | AC   | 18             | 352624   | 6474355   | 350     | -90 | 0       |
| AAC0347 | AC   | 35             | 352542   | 6474352   | 350     | -90 | 0       |
| AAC0348 | AC   | 46             | 352501   | 6474349   | 350     | -90 | 0       |
| AAC0349 | AC   | 44             | 352417   | 6474351   | 350     | -90 | 0       |
| AAC0350 | AC   | 48             | 352378   | 6474353   | 350     | -90 | 0       |
| AAC0351 | AC   | 55             | 352347   | 6474344   | 350     | -90 | 0       |
| AAC0352 | AC   | 48             | 352299   | 6474358   | 350     | -90 | 0       |
| AAC0353 | AC   | 51             | 352257   | 6474360   | 350     | -90 | 0       |
| AAC0354 | AC   | 62             | 352222   | 6474356   | 350     | -90 | 0       |
| AAC0355 | AC   | 35             | 352155   | 6474749   | 350     | -90 | 0       |
| AAC0356 | AC   | 35             | 352115   | 6474757   | 350     | -90 | 0       |
| AAC0357 | AC   | 26             | 352998   | 6475146   | 350     | -90 | 0       |

| Hole_ID | Туре | Hole Depth (m) | MGA_East | MGA_North | Orig_RL | Dip | MGA_Azi |
|---------|------|----------------|----------|-----------|---------|-----|---------|
| AAC0358 | AC   | 23             | 352959   | 6475146   | 350     | -90 | 0       |
| AAC0359 | AC   | 22             | 352911   | 6475146   | 350     | -90 | 0       |
| AAC0360 | AC   | 41             | 352879   | 6475156   | 350     | -90 | 0       |
| AAC0361 | AC   | 26             | 352837   | 6475152   | 350     | -90 | 0       |
| AAC0362 | AC   | 27             | 352799   | 6475151   | 350     | -90 | 0       |
| AAC0363 | AC   | 25             | 352757   | 6475149   | 350     | -90 | 0       |
| AAC0364 | AC   | 23             | 352715   | 6475152   | 350     | -90 | 0       |
| AAC0365 | AC   | 21             | 352673   | 6475148   | 350     | -90 | 0       |
| AAC0366 | AC   | 21             | 352640   | 6475154   | 350     | -90 | 0       |
| AAC0367 | AC   | 23             | 352561   | 6475154   | 350     | -90 | 0       |
| AAC0368 | AC   | 26             | 352473   | 6475154   | 350     | -90 | 0       |
| AAC0369 | AC   | 29             | 352398   | 6475153   | 350     | -90 | 0       |
| AAC0370 | AC   | 31             | 352323   | 6475147   | 350     | -90 | 0       |
| AAC0371 | AC   | 52             | 352240   | 6475152   | 350     | -90 | 0       |
| AAC0372 | AC   | 56             | 352197   | 6475148   | 350     | -90 | 0       |
| AAC0373 | AC   | 83             | 352152   | 6475143   | 350     | -90 | 0       |
| AAC0374 | AC   | 47             | 352072   | 6475145   | 350     | -90 | 0       |
| AAC0375 | AC   | 41             | 352041   | 6475146   | 350     | -90 | 0       |
| AAC0376 | AC   | 38             | 352005   | 6475155   | 350     | -90 | 0       |
| AAC0377 | AC   | 84             | 351919   | 6475148   | 350     | -90 | 0       |
| AAC0378 | AC   | 71             | 351832   | 6475148   | 350     | -90 | 0       |
| AAC0379 | AC   | 42             | 351763   | 6475152   | 350     | -90 | 0       |
| AAC0380 | AC   | 32             | 352922   | 6475348   | 350     | -90 | 0       |
| AAC0381 | AC   | 29             | 352881   | 6475348   | 350     | -90 | 0       |
| AAC0382 | AC   | 35             | 352841   | 6475349   | 350     | -90 | 0       |
| AAC0383 | AC   | 31             | 352798   | 6475348   | 350     | -90 | 0       |
| AAC0384 | AC   | 36             | 352760   | 6475347   | 350     | -90 | 0       |
| AAC0385 | AC   | 38             | 352718   | 6475355   | 350     | -90 | 0       |
| AAC0386 | AC   | 41             | 352679   | 6475352   | 350     | -90 | 0       |
| AAC0387 | AC   | 49             | 352641   | 6475351   | 350     | -90 | 0       |
| AAC0388 | AC   | 40             | 352597   | 6475344   | 350     | -90 | 0       |
| AAC0389 | AC   | 56             | 352720   | 6475571   | 350     | -90 | 0       |
| AAC0390 | AC   | 68             | 352680   | 6475559   | 350     | -90 | 0       |
| AAC0391 | AC   | 75             | 352795   | 6475746   | 350     | -90 | 0       |
| AAC0392 | AC   | 70             | 352720   | 6475746   | 350     | -90 | 0       |
| AAC0393 | AC   | 66             | 352637   | 6475750   | 350     | -90 | 0       |
| AAC0394 | AC   | 85             | 352559   | 6475750   | 350     | -90 | 0       |
| AAC0395 | AC   | 61             | 352480   | 6475746   | 350     | -90 | 0       |
| AAC0396 | AC   | 41             | 351314   | 6476070   | 350     | -90 | 0       |
| AAC0397 | AC   | 47             | 351651   | 6475571   | 350     | -90 | 0       |

| Hole_ID | Туре | Hole Depth (m) | MGA_East | MGA_North | Orig_RL | Dip | MGA_Azi |
|---------|------|----------------|----------|-----------|---------|-----|---------|
| AAC0398 | AC   | 16             | 351590   | 6474767   | 350     | -90 | 0       |
| AAC0399 | AC   | 39             | 351371   | 6473889   | 350     | -90 | 0       |
| AAC0400 | AC   | 73             | 350829   | 6472860   | 350     | -90 | 0       |
| AAC0401 | AC   | 98             | 350527   | 6472575   | 350     | -90 | 0       |
| AAC0402 | AC   | 68             | 350242   | 6472263   | 350     | -90 | 0       |
| AAC0403 | AC   | 44             | 349900   | 6471944   | 350     | -90 | 0       |
| AAC0404 | AC   | 14             | 350260   | 6470916   | 350     | -90 | 0       |
| AAC0405 | AC   | 62             | 350041   | 6470458   | 350     | -90 | 0       |
| AAC0406 | AC   | 2              | 349858   | 6470076   | 350     | -90 | 0       |
| AAC0407 | AC   | 8              | 349922   | 6469586   | 350     | -90 | 0       |
| AAC0408 | AC   | 25             | 349847   | 6469035   | 350     | -90 | 0       |
| AAC0409 | AC   | 10             | 349940   | 6468550   | 350     | -90 | 0       |
| AAC0411 | AC   | 52             | 350122   | 6471526   | 350     | -90 | 0       |
| AAC0412 | AC   | 47             | 344626   | 6479940   | 350     | -90 | 0       |
| AAC0413 | AC   | 28             | 344096   | 6479866   | 350     | -90 | 0       |
| AAC0414 | AC   | 68             | 343738   | 6480325   | 350     | -90 | 0       |
| AAC0415 | AC   | 20             | 343099   | 6480755   | 350     | -90 | 0       |
| AAC0416 | AC   | 41             | 342900   | 6481108   | 350     | -90 | 0       |
| AAC0417 | AC   | 46             | 342743   | 6481471   | 350     | -90 | 0       |
| AAC0418 | AC   | 64             | 342794   | 6481864   | 350     | -90 | 0       |
| AAC0419 | AC   | 19             | 342836   | 6482288   | 350     | -90 | 0       |
| AAC0420 | AC   | 45             | 343698   | 6481150   | 350     | -90 | 0       |
| AAC0421 | AC   | 7              | 344185   | 6481426   | 350     | -90 | 0       |
| AAC0422 | AC   | 23             | 344297   | 6481496   | 350     | -90 | 0       |
| AAC0423 | AC   | 81             | 341599   | 6480571   | 350     | -90 | 0       |
| AAC0424 | AC   | 11             | 340699   | 6480461   | 350     | -90 | 0       |
| AAC0425 | AC   | 92             | 339334   | 6480294   | 350     | -90 | 0       |

# **APPENDIX B: Aircore Drilling-JORC Table 1 Checklist**

Section 1 Sampling Techniques and Data (Criteria in this section apply to the succeeding section)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Sampling techniques    | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.  Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.  Aspects of the determination of mineralisation that are Material to the Public Report.  In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Air core drilling used to obtain 1m samples via a rig-mounted cyclone and bucket with each sample placed in an individual pile. An approximately 2.5kg sample was then obtained using a small scoop and sampling from individual piles to produce composite 4m samples except where the end of hole restricted the composite to 3m or less                                                                                                     |  |  |  |
| Drilling<br>techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>All Auric aircore drilling by face-sampling blade bit with a drill bit (hole) diameter of approximately 121mm.</li> <li>Holes drilled to 'refusal' i.e., depth at which blade bit can no longer penetrate which ranged from 1m to 104m</li> </ul>                                                                                                                                                                                     |  |  |  |
| Drill sample recovery  | Method of recording and assessing core and chip sample recoveries and results assessed.  Measures taken to maximize sample recovery and ensure representative nature of the samples.  Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Drill sample recovery varied depending on ground conditions and was generally good in the residual profile but poor in some intervals within transported sands and clays.</li> <li>Aircore is a face-sampling technique with generally good recoveries. Samples were collected via a cyclone which also maximises sample recovery.</li> <li>There is no evidence of sample bias as all results are from residual portions.</li> </ul> |  |  |  |
| Logging                | Whether core and chip samples have been geologically and geotechnically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All chips were logged at 1m intervals corresponding to the sample intervals and                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         | logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.  Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.  The total length and percentage of the relevant intersections logged.                                                                                                                                                                                                                                                                                                                                             | <ul> <li>according to Auric's coding system</li> <li>The drilling and sampling technique is appropriate for early stage exploration but will not be used to support mineral resource estimation, mining studies and metallurgical studies.</li> <li>The logging is qualitative in nature however, pXRF results for Cr, Ti and Zr were compared with the geological logs and used to better quantify lithologies, particularly clayweathered protoliths</li> <li>Chips were not photographed but selected chips from the bottom of hole sample have been retained in compartmentalised chip trays</li> <li>The total length logged is 7,227m which is 100% of the drilled intervals</li> </ul>                                                                                                                                                 |
| Sub-sampling<br>techniques<br>and sample<br>preparation | If core, whether cut or sawn and whether quarter, half or all cores taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.  For all sample types, the nature, quality and appropriateness of the sample preparation technique.  Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.  Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.  Whether sample sizes are appropriate to the grain size of the material being sampled. | <ul> <li>Samples were taken by hand scoop which is industry standard but does not ensure sample representivity. The technique is nevertheless appropriate to this early stage exploration.</li> <li>Samples were mostly dry but damp and wet intervals were encountered and have been recorded.</li> <li>No duplicate samples were taken</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Quality of<br>assay data<br>and laboratory<br>tests     | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.                                                       | <ul> <li>All samples were analysed for Au but only bottom of hole composites and 1m intervals selected on the basis of pXRF results were analysed for Ni and associated elements</li> <li>Bottom of hole samples, representing between 1m and 4m, were analysed by Intertek Genalysis for a suite of multilements including Ni via a 4-acid digest and Inductively Coupled Plasma Mass Spectrometry and for Au, Pt and Pd via 50g Fire Assay and Inductively Coupled Plasma Mass Spectrometry. The fire assay is considered to be a total digestion technique. The 4 Acid digest provides only a partial digest for 18 of the 48 elements analysed and is considered to be a total digest for the remainder. The 4 Acid digest is considered to provide complete recovery for Ni, Cu and Zn and near complete recovery for most Cr</li> </ul> |

samples

| Criteria                              | JORC Code explanation                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Crireria                              | JORC Code explanation                                                                                                                                                                        | <ul> <li>A hand-held Vanta M Series pXRF was used at site to analyse all single metre intervals for a suite of 38 elements, scanning across 3 band widths for 15 seconds each.</li> <li>Standards were scanned using the pXRF at regular intervals and specific elements graphed against expected values.</li> <li>Results indicate precise and reasonably accurate data for Ni with regards to using pXRF Ni values for selection of single metre samples for laboratory analysis</li> <li>The element concentrations were used as an objective basis for the selection of 1m samples for further lab analysis.</li> <li>A 1000ppm Ni cut-off reading on the pXRF was used as the basis for selection of samples for laboratory Ni analysis</li> <li>Samples selected on the basis of pXRF analyses for subsampling at 1m intervals were submitted to Intertek Genalysis. The samples were analysed for a suite of 48 multilements + 12 REE via a 4-acid digest and Inductively Coupled Plasma Mass Spectrometry and for Au, Pt and Pd via 50g Fire Assay and Inductively Coupled Plasma Mass Spectrometry. The fire assay is considered to be a total digest for 18 of the 48 elements and 8 of the 12 REE analysed and is considered to be a total digest for the remainder, including Ni, Cu and Zn.</li> <li>The laboratory (Intertek Genalysis) analysed standards and blanks inserted with each sample batch</li> <li>Comparison of expected results for standards with the assays received for both Bottom of Hole composites and single metre individual</li> </ul> |
| Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel.                                                                                        | <ul> <li>samples indicates accurate and precise laboratory data</li> <li>Anomalous assays have been verified by alternative Auric personnel.</li> <li>No twinned holes have been drilled.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                       | The use of twinned holes.  Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.  Discuss any adjustment to assay data. | <ul> <li>Field sample records are merged with assay results from the lab and various cross reference checks, both manual and computational used to ensure data integrity.</li> <li>Data is stored on two separate computers and backed up regularly</li> <li>No adjustment has been made to assay data.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Location of<br>data points            | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.                  | <ul> <li>Hole collar positions were located using a hand-held GPS referenced to MGA-GDA94, Zone 51 and are accurate to within 5m</li> <li>Most holes were drilled vertical. Angled holes were drilled at -60° inclination. Hole azimuth</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Criteria                                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | Specification of the grid system used.  Quality and adequacy of topographic control.                                                                                                                                                                                                                                                                                  | <ul> <li>and dip was measured at surface using a compass and inclinometer</li> <li>The hand-held GPS was used to define collar elevation for some holes and an arbitrary elevation was applied to others. This is appropriate to early-stage exploration. Topographic control will be established where the potential for economic mineralisation is demonstrated</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            |
| Data spacing and distribution                                    | Data spacing for reporting of Exploration Results.  Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.  Whether sample compositing has been applied.                                        | <ul> <li>Drill holes are nominally spaced at 40m Densest drilling is at nominal 40m hole spacing along traverses. Traverse spacing in that area is nominally 200m but extending out to 1400m. Reconnaissance holes were drilled along three other traverses at nominal 500 m spacings</li> <li>The holes and data will not be used for mineral resource estimation</li> <li>Bottom-of-hole samples were composited for intervals between 1 m and 4 m. Remaining samples sent for Ni analysis were not composited.</li> <li>Ni assays represent either bottom of hole composites or 1m intervals selected on the basis of pXRF results. The intervals sampled for Ni and other multielements represent approximately 13% of the 7227m drilled</li> </ul> |
| Orientation of<br>data in relation<br>to geological<br>structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Drilling is at an early stage and the orientation<br>of possible structural controls on<br>mineralisation is not known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sample<br>security                                               | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                         | <ul> <li>Auric personnel were present during all drilling and sampling and individual samples were bagged and sealed in larger polywoven bags with no opportunity for tampering.</li> <li>Samples were transported to the lab by Auric personnel</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Audits or reviews                                                | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                 | Sampling techniques and data are reviewed internally. There have been no external reviews                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement<br>and land<br>tenure status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.  The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.                                                                                                                                                                                                                                        | <ul> <li>Air core drilling was conducted within E15/1801 which is held by Mr John Williams and operated by Auric Mining subsidiary, Chalice West Pty Ltd under the terms of an Option Agreement.</li> <li>There are no known impediments to obtaining a licence to explore or mine in the area beyond routine compliance requirements</li> </ul>                                                                                                                                                                                                                           |
| Exploration<br>done by<br>other parties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Resolute Limited completed an aircore drill program in 1997, comprising 82 drill holes for 2960m, and a follow-up soil sampling program in 1998.</li> <li>The 1997 drilling returned Au anomalism coincident with magnetic units that mimic the magnetic stratigraphy hosting the Chalice deposit approx. 6km to the northeast. Selected Resolute drill samples were also analysed for Ni, Cu, Cr, Zn and As, identifying a number of anomalous (+1000ppm) Ni intervals</li> <li>The 1998 soil sampling defined several areas of (100ppm) Ni anomalism</li> </ul> |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Air core drilling targeted favourable stratigraphy (including ultramafics) in a setting that mirrors the host rocks to the Chalice gold deposit where the 2 areas are separated by a granite dome. The most appropriate model for Ni exploration in this area is komatiite-hosted Ni similar to that found in the nearby Widgiemooltha and Kambalda areas                                                                                                                                                                                                                  |
| Drill hole<br>Information                        | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:  a easting and northing of the drill hole collar  elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar  dip and azimuth of the hole  down hole length and interception depth  hole length.  If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | Refer to: Appendix A: Aircore Drillhole Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data<br>aggregation<br>methods                                                  | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.  Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.  The assumptions used for any reporting of metal equivalent values should be clearly stated. | <ul> <li>Ni results are reported above 1000ppm with corresponding Co, Cu, Zn and Cr values</li> <li>Bottom of hole samples represent field composites of between 1 and 4m and are as reported by the laboratory with no averaging</li> </ul>                                                            |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | These relationships are particularly important in the reporting of Exploration Results.  If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.  If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').                                                                                                                                                                             | Ni anomalism is considered to be dispersed to some extent within the regolith such that the relationship between mineralisation widths and intercept widths is not relevant                                                                                                                             |
| Diagrams                                                                        | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                                                                                                                                                                                         | Refer to Figures 1-3 and Table 1                                                                                                                                                                                                                                                                        |
| Balanced reporting                                                              | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Reporting is balanced – approximately 1.6% of pXRF Ni concentrations exceeded 1000ppm (0.1% Ni). This was the basis of selection for 1m infill sampling such that intercepts reported as anomalous, are clearly anomalous</li> </ul>                                                           |
| Other<br>substantive<br>exploration<br>data                                     | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.                                                                                                                                                                     | The air core program represents early-stage exploration. Possible links between anomalous values and geological features (in particular lithology) have been described                                                                                                                                  |
| Further work                                                                    | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.                                                                                                                                                                                                                    | Ongoing exploration will focus on potential for nickel sulphide mineralisation in fresh rock below the current drilling. A geophysical (EM) survey will likely be undertaken with results used in concert with the drilling results and geological interpretation to define targets for deeper drilling |